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Abstract. OMAC is a provably secure MAC scheme which NIST cur-
rently intends to specify as the modes recommendation. In August 2003,
Mitchell proposed two variants of OMAC. We call them OMAC1′ and
OMAC1′′. In this paper, we prove that:
– OMAC1′ is completely insecure. There are forgery attacks by using

only one oracle query, and
– OMAC1′′ is less secure than original OMAC1. We show a security

gap between them.
As a result, we obtain a negative answer to Mitchell’s open question —
OMAC1′ and OMAC1′′ are not provably secure even if the underlying
block cipher is a PRP.
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1 Introduction

1.1 Background

CBC MAC [6, 7] is a well-known and widely used message authentication code
(MAC) based on a block cipher E. We denote the CBC MAC value of a message
M by CBCK(M), where K is the key of E. While Bellare, Kilian, and Rogaway
proved that the CBC MAC is secure for fixed length messages [2], it is not secure
for variable length messages.

Therefore, several variants of CBC MAC have been proposed which are prov-
ably secure for variable length messages: we have EMAC, XCBC, TMAC and
OMAC.

EMAC (Encrypted MAC) is obtained by encrypting CBCK1(M) by E again
with a new key K2 [3]. That is,

EMACK1,K2(M) = EK2(CBCK1(M)) .

Petrank and Rackoff proved that EMAC is secure if the message length is a
multiple of n, where n is the block length of E [13].
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Fig. 1. Illustration of XCBC.

For arbitrary length messages, we can simply append the minimal 10i to a
message M so that the length is a multiple of n. In this method, however, we
must append an entire extra block 10n−1 if the size of the message is already a
multiple of n. This is a “wasting” of one block cipher invocation.

Black and Rogaway next proposed XCBC to solve the above problem [4].
XCBC takes three keys: one k-bit key K1 for E, two n-bit keys K2 and K3 (k
denotes the key length of E). In XCBC, we do not append 10n−1 if the size of
the message is already a multiple of n. Only if this is not the case, we append the
minimal 10i. In order to distinguish them, K2 or K3 is XORed before encrypting
the last block. XCBC is now described as follows (see Fig. 1).

– If |M | = mn for some m > 0, then XCBC computes exactly the same as the
CBC MAC, except for XORing an n-bit key K2 before encrypting the last
block.

– Otherwise, 10i padding (i = n−|M |−1 mod n) is appended to M and XCBC
computes exactly the same as the CBC MAC for the padded message, except
for XORing another n-bit key K3 before encrypting the last block.

Kurosawa and Iwata then proposed TMAC which requires two keys, one k-bit
key K1 and one n-bit key K2 [10]. TMAC is obtained from XCBC by replacing
(K2, K3) with (K2 · u, K2), where u is some non-zero constant and “·” denotes
multiplication in GF(2n). Sung, Hong, and Lee showed a key recovery attack
against TMAC [15].

Finally, Iwata and Kurosawa proposed OMAC which requires only one block
cipher key K [8]. OMAC is a generic name for OMAC1 and OMAC2. Let
L = EK(0n). Then OMAC1 is obtained from XCBC by replacing (K1, K2, K3)
with (K, L · u, L · u2). Similarly, OMAC2 is obtained from XCBC by replacing
(K1, K2, K3) with (K, L · u, L · u−1).

1.2 Two New OMAC1 Variants: OMAC1′ and OMAC1′′ [12]

EMAC, XCBC, TMAC and OMAC are all provably secure against chosen mes-
sage attack if the underlying block cipher is a PseudoRandom Permutation
(PRP). Indeed, for all of the above MACs, it has been shown that the forg-
ing probability is upper bounded by the birthday bound term plus insecurity
function of the underlying block cipher as a PRP, which is a standard and ac-
ceptable security bound. In fact, many block cipher modes of operations have



this security bound. For example we have CTR mode [1] and CBC mode [1] for
symmetric encryption, and PMAC [5] for message authentication. Nevertheless,
Mitchell proposed two new OMAC1 variants to improve the security of original
OMAC1. We call them OMAC1′ and OMAC1′′.

– Similarly to OMAC1, OMAC1′ uses one block cipher key K. OMAC1′ is
obtained from XCBC by replacing (K1, K2, K3) with (K, EK(S2), EK(S3)),
where S2 and S3 are some distinct n-bit constants.

– Similarly, OMAC1′′ is obtained from XCBC by replacing (K1, K2, K3) with
(K⊕S1, EK(S2), EK(S3)), where S1 is some fixed k-bit constant, S2 and S3

are some distinct n-bit constants.

It was claimed that OMAC1′ and OMAC1′′ are more secure than OMAC1
[12]. Mitchell also posed an open question of whether OMAC1′ and OMAC1′′

are provably secure [12].

1.3 Our Contribution

In this paper, however, we show that the security is not improved. We prove
that:

– OMAC1′ is completely insecure. There are forgery attacks by using only one
oracle query, and

– OMAC1′′ is less secure than original OMAC1. We show a security gap be-
tween them.

To derive the second result, we first construct a PRP G with the following
property: For any K ∈ {0, 1}k,

GK(·) = GK⊕S1(·) .

(A similar PRP is used in [14, 9].) We then show that OMAC1′′ is completely in-
secure if G is used as the underlying block cipher. This implies underlying block
cipher being a PRP is not enough for proving the security of OMAC1′′. Equiv-
alently, it is impossible for OMAC1′′ to prove its security under the assumption
of the underlying block cipher being a PRP. That is,

– OMAC1 is a secure MAC if the underlying block cipher is a PRP [8], while
– it is impossible for OMAC1′′ to achieve this security notion.

Therefore, there is a security gap between OMAC1 and OMAC1′′, and OMAC1′′

is less secure than OMAC1. This gives a negative answer to Mitchell’s open ques-
tion — OMAC1′ and OMAC1′′ are not provably secure even if the underlying
block cipher is a PRP.



2 Preliminaries

2.1 Block Ciphers and MACs

Block cipher, E. A block cipher E is a function E : {0, 1}k × {0, 1}n → {0, 1}n,
where, for each K ∈ {0, 1}k, E(K, ·) is a permutation over {0, 1}n. We write
EK(·) for E(K, ·). k is called the key length and n is called the block length. For
TripleDES, k = 112, 168 and n = 64, and for the AES, k = 128, 192, 256 and
n = 128.

MAC. A MAC is a function MAC : {0, 1}k × {0, 1}∗ → {0, 1}n. It takes a key
K ∈ {0, 1}k and a message M ∈ {0, 1}∗ to return an n-bit tag T ∈ {0, 1}n.
We write MACK(·) for MAC(K, ·). In this paper, we only consider deterministic
MACs.

2.2 Security Definitions

Our definitions follow from those given in [11] for PRP, and [2] for the security
of MACs.

Security of block ciphers (PRP) [11]. Let Perm(n) denote the set of all permu-
tations on {0, 1}n. We say that P is a random permutation if P is randomly
chosen from Perm(n).

The security of a block cipher E : {0, 1}k × {0, 1}n → {0, 1}n as a pseu-
dorandom permutation (PRP) is quantified as Advprp

E (A), the advantage of an
adversary A that tries to distinguish EK(·) (with a randomly chosen key K)
from a random permutation P (·). Let AEK(·) denote A with an oracle which, in
response to a query X , returns EK(X), and let AP (·) denote A with an oracle
which, in response to a query X , returns P (X). After making queries, A outputs
a bit. Then the advantage is defined as

Advprp
E (A) def=

∣∣∣Pr(K R← {0, 1}k : AEK(·) = 1)− Pr(P R← Perm(n) : AP (·) = 1)
∣∣∣ .

We say that E is a PRP if Advprp
E (A) is sufficiently small for any A.

Security of MACs [2]. Let MAC : {0, 1}k × {0, 1}∗ → {0, 1}n be a MAC al-
gorithm. Let AMACK(·) denote A with an oracle which, in response to a query
M ∈ {0, 1}∗, returns MACK(M) ∈ {0, 1}n. We say that an adversary AMACK(·)

forges if A outputs (M, T ), where T = MACK(M) and A never queried M
to its oracle MACK(·). We call (M, T ) a forgery attempt. Then we define the
advantage as

Advmac
MAC(A) def= Pr(K R← {0, 1}k : AMACK(·) forges) .

We say that a MAC algorithm is secure if Advmac
MAC(A) is sufficiently small for

any A.



Algorithm OMAC1K(M)
L← EK(0n)
Y [0]← 0n

Let M = M [1] · · ·M [m], where |M [i]| = n for i = 1, . . . , m− 1
for i← 1 to m− 1 do

X[i]←M [i] ⊕ Y [i − 1]
Y [i]← EK(X[i])

if |M [m]| = n then X[m]←M [m] ⊕ L · u
else X[m]← (M [m]10n−1−|M[m]|)⊕ L · u2

T ← EK(X[m])
return T

Fig. 2. Definition of OMAC1.
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Fig. 3. Illustration of OMAC1.

2.3 OMAC1 [8]

OMAC1 takes just one k-bit key K ∈ {0, 1}k. It takes an arbitrary length mes-
sage M ∈ {0, 1}∗ to return an n-bit tag T ∈ {0, 1}n.

The algorithm of OMAC1 is described in Fig. 2 and illustrated in Fig. 3.
In Fig. 2 and Fig. 3,

L · u =
{

L << 1 if msb(L) = 0,
(L << 1)⊕ Cstn otherwise,

where: (1) msb(L) denotes the most significant bit of L (meaning the left most
bit), (2) L << 1 denotes the left shift of L by one bit (the most significant bit
disappears and a zero comes into the least significant bit), and (3) Cstn is an
n-bit constant. For example, Cst64 = 05911011 and Cst128 = 012010000111.

L · u2 is simply (L · u) · u. That is,

L · u2 =
{

(L · u) << 1 if msb(L · u) = 0,
((L · u) << 1)⊕ Cstn otherwise.

2.4 Two New OMAC1 Variants: OMAC1′ and OMAC1′′ [12]

OMAC1′ [12]. Similarly to OMAC1, OMAC1′ takes just one k-bit key K ∈
{0, 1}k. It takes an arbitrary length message M ∈ {0, 1}∗ to return an n-bit tag
T ∈ {0, 1}n.

The algorithm of OMAC1′ is described in Fig. 4 and illustrated in Fig. 5.
In Fig. 4 and Fig. 5, S2 and S3 are some distinct n-bit constants.



Algorithm OMAC1′
K(M)

L2 ← EK(S2)
L3 ← EK(S3)
Y [0]← 0n

Let M = M [1] · · ·M [m], where |M [i]| = n for i = 1, . . . , m− 1
for i← 1 to m− 1 do

X[i]←M [i] ⊕ Y [i − 1]
Y [i]← EK(X[i])

if |M [m]| = n then X[m]←M [m] ⊕ L2

else X[m]← (M [m]10n−1−|M[m]|)⊕ L3

T ← EK(X[m])
return T

Fig. 4. Definition of OMAC1′.
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Fig. 5. Illustration of OMAC1′. Note that L2 = EK(S2) and L3 = EK(S3).

OMAC1′′ [12]. Similarly to OMAC1 and OMAC1′, OMAC1′′ takes just one
k-bit key K ∈ {0, 1}k. It takes an arbitrary length message M ∈ {0, 1}∗ to return
an n-bit tag T ∈ {0, 1}n.

The algorithm of OMAC1′′ is described in Fig. 6 and illustrated in Fig. 7.
In Fig. 6 and Fig. 7, S1 is some fixed k-bit constant, S2 and S3 are some

distinct n-bit constants.

3 OMAC1� Is Completely Insecure

We show two equally efficient attacks against OMAC1′.

3.1 Attack 1

The adversary first obtains a tag T ∈ {0, 1}n for a two block message M ′ =
(S2, S2) ∈ {0, 1}2n. Then it outputs (M, T ), where M = S2 ⊕ T , as a forgery
attempt.

3.2 Analysis of Attack 1

For a message M ′ = (S2, S2) ∈ {0, 1}2n, we have

T = OMAC1′K(M ′) = EK(EK(S2)⊕ S2 ⊕ L2) .



Algorithm OMAC1′
K(M)

L1 ← K ⊕ S1

L2 ← EK(S2)
L3 ← EK(S3)
Y [0]← 0n

Let M = M [1] · · ·M [m], where |M [i]| = n for i = 1, . . . , m− 1
for i← 1 to m− 1 do

X[i]←M [i] ⊕ Y [i − 1]
Y [i]← EL1(X[i])

if |M [m]| = n then X[m]←M [m] ⊕ L2

else X[m]← (M [m]10n−1−|M[m]|)⊕ L3

T ← EL1(X[m])
return T

Fig. 6. Definition of OMAC1′′.
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Fig. 7. Illustration of OMAC1′′. Note that L1 = K ⊕ S1, L2 = EK(S2) and L3 =
EK(S3).

Since L2 = EK(S2), we have

EK(EK(S2)⊕ S2 ⊕ L2) = EK(L2 ⊕ S2 ⊕ L2) = EK(S2) = L2 .

Therefore, T = L2. See Fig. 8.
Now for a message M = S2 ⊕ T in forgery attempt, we have

OMAC1′K(M) = OMAC1′K(S2 ⊕ T ) = EK(S2 ⊕ T ⊕ L2) .

Since T = L2, we have

EK(S2 ⊕ T ⊕ L2) = EK(S2 ⊕ L2 ⊕ L2) = EK(S2) = T .

Therefore, our adversary in Sect. 3.1 forges with probability 1. See Fig. 9.

3.3 Attack 2

The adversary first fix some M ′ ∈ {0, 1}∗ such that 1 ≤ |M ′| < n, and then
obtains a tag T ∈ {0, 1}n for a two block message M ′′ = (S3, M

′). Then it
outputs (M, T ), where M = (M ′10n−1−|M ′|, S3 ⊕ T, M ′), as a forgery attempt.
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Fig. 8. Illustration of adversary’s
query. Note that T = L2.
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Fig. 9. Illustration of adversary’s
forgery attempt. We see that T =
OMAC1′

K(S2 ⊕ T ).

3.4 Analysis of Attack 2

For a message M ′′ = (S3, M
′), we have

T = OMAC1′K(M ′′) = EK(EK(S3)⊕ (M ′10n−1−|M ′|)⊕ L3) .

Since L3 = EK(S3), we have

EK(EK(S3)⊕ (M ′10n−1−|M ′|)⊕ L3) = EK(L3 ⊕ (M ′10n−1−|M ′|)⊕ L3)

= EK(M ′10n−1−|M ′|) .

Therefore, T = EK(M ′10n−1−|M ′|). See Fig. 10.
Now for a message M = (M ′10n−1−|M ′|, S3 ⊕ T, M ′) in forgery attempt, we

have

OMAC1′K(M) = EK(EK(EK(M ′10n−1−|M ′|)⊕S3⊕T )⊕(M ′10n−1−|M ′|)⊕L3) .

Since T = EK(M ′10n−1−|M ′|), we have

OMAC1′K(M) = EK(EK(T ⊕ S3 ⊕ T )⊕ (M ′10n−1−|M ′|)⊕ L3)

= EK(EK(S3)⊕ (M ′10n−1−|M ′|)⊕ L3) .

Since L3 = EK(S3), we have

OMAC1′K(M) = EK(L3 ⊕ (M ′10n−1−|M ′|)⊕ L3)

= EK(M ′10n−1−|M ′|)
= T .

Therefore, our adversary in Sect. 3.3 forges with probability 1. See Fig. 11.

3.5 Theorem

We have the following theorem.

Theorem 3.1. OMAC1′ is not a secure MAC. There exists an adversary A
that makes 1 query and Advmac

OMAC1′(A) = 1.

Proof. From Sect. 3.1 and 3.3. ��
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Fig. 10. Illustration of adver-
sary’s query. We have T =
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Fig. 11. Illustration of adversary’s forgery
attempt. We see that T = OMAC1′

K(M).

4 OMAC1�� Is Less Secure Than OMAC1

In this section, we first construct a PRP G with the following property: For any
K ∈ {0, 1}k,

GK(·) = GK⊕S1(·) ,

where S1 is a non-zero k-bit constant. We then show that OMAC1′′ is completely
insecure if G is used as the underlying block cipher. This implies underlying block
cipher being a PRP is not enough for proving the security of OMAC1′′. Equiv-
alently, it is impossible for OMAC1′′ to prove its security under the assumption
of the underlying block cipher being a PRP. That is,

– OMAC1 is a secure MAC if the underlying block cipher is a PRP [8], while
– it is impossible for OMAC1′′ to achieve this security notion.

Therefore, there is a security gap between OMAC1 and OMAC1′′, and OMAC1′′

is less secure than OMAC1.

4.1 Construction of a PRP, G

Let E : {0, 1}k−1 × {0, 1}n → {0, 1}n be a block cipher. It uses a (k − 1)-bit
key K ′ to encrypt an n-bit plaintext X into an n-bit ciphertext Y = EK′(X),
where EK′(X) def= E(K ′, X). For each K ′ ∈ {0, 1}k−1, EK′(·) is a permutation
over {0, 1}n.

Now we construct a new block cipher G : {0, 1}k × {0, 1}n → {0, 1}n from
E as in Fig. 12. The inputs to the algorithm are a block cipher E and some
non-zero k-bit constant S1. The output is a new block cipher G.

– For a k-bit string S1 = (s0, s1, . . . , sk−1), nzi(S1) denotes the smallest index
of non-zero element. That is, nzi(S1) = j such that s0 = · · · = sj−1 = 0 and
sj = 1. For example, if k = 4 and S1 = 0xA = 1010, then nzi(S1) = 0, and
if S1 = 0x5 = 0101, then nzi(S1) = 1.

– num2strk−1(i) is a (k − 1)-bit binary representation of i. For example, if
k = 4 then num2strk−1(0) = (0, 0, 0) and num2strk−1(6) = (1, 1, 0).



Construction of G from E and S1

j ← nzi(S1);

for i = 0 to 2k−1 − 1 do �
K′ ← num2strk−1(i);
K1 ← first0..j−1(K

′)‖0‖lastj..k−2(K
′);

K2 ← K1 ⊕ S1;
GK1 ← EK′ ;
GK2 ← EK′ ; �

Fig. 12. Construction of G from E and S1.

– For a (k − 1)-bit string K ′ = (K ′
0, . . . , K

′
k−2) and an integer 0 ≤ j ≤ k − 1,

first0..j−1(K ′) denotes the first j bits of K ′. That is, first0..j−1(K ′) =
(K ′

0, . . . , K
′
j−1). For example, if j = 2 and K ′ = (1, 1, 0) then we have

first0..j−1(K ′) = (1, 1), and if j = 1 and K ′ = (0, 1, 0) then we have
first0..j−1(K ′) = (0). If j = 0, then first0..j−1(K ′) is an empty string.

– Similarly, for a (k − 1)-bit string K ′ = (K ′
0, . . . , K

′
k−2) and an integer

0 ≤ j ≤ k − 1, lastj..k−2(K ′) denotes the last (k − 1) − j bits of K ′.
That is, lastj..k−2(K ′) = (K ′

j , . . . , K
′
k−2). For example, if j = 2 and K ′ =

(1, 1, 0) then lastj..k−2(K ′) = (0), and if j = 1 and K ′ = (0, 1, 0) then
lastj..k−2(K ′) = (1, 0). If j = k−1, then lastj..k−2(K ′) is an empty string.

– a‖b denotes the concatenation of a and b. For example, if a = 1 and b =
(1, 0, 1) then a‖b = (1, 1, 0, 1).

Observe that GK is well defined for all K ∈ {0, 1}k. Indeed, “for loop” in the
third line contains 2k−1 iterations, and for each loop, two Gs are assigned. Let
K ′(i), K

(i)
1 and K

(i)
2 denote K ′, K1 and K2 in the i-th iteration. Then we see

that for any distinct i and i′,

– K
(i)
1 	= K

(i′)
1 and K

(i)
2 	= K

(i′)
2 (since K ′(i) 	= K ′(i′)), and

– K
(i)
1 	= K

(i′)
2 and K

(i)
2 	= K

(i′)
1 (since they differ in the j-th bit).

That is, K
(i)
1 and K

(i)
2 in the i-th iteration will not be assigned in the i′-th

iteration.
Also observe that we have, for any K ∈ {0, 1}k, GK(·) = GK⊕S1(·).
We show two small examples. First, let k = 4, S1 = 0xA = 1010 and

E = {E000, E001, E010, E011, E100, E101, E110, E111},

where each EK′ is a permutation over {0, 1}n. In this case, j = 0, and for
K ′ = (K ′

0, K
′
1, K

′
2), K1 = (0, K ′

0, K
′
1, K

′
2), and K2 = (1, K ′

0, K
′
1 ⊕ 1, K ′

2). Then
we obtain

G = {G0000, G0001, G0010, G0011, G0100, G0101, G0110, G0111,
G1000, G1001, G1010, G1011, G1100, G1101, G1110, G1111}



Algorithm AO

when B asks its r-th query Xr:
return O(Xr);

when B halts and output b:
output b;

Fig. 13. Construction of A.

where 


G0000 = E000, G0001 = E001, G0010 = E010, G0011 = E011,
G0100 = E100, G0101 = E101, G0110 = E110, G0111 = E111,
G1000 = E010, G1001 = E011, G1010 = E000, G1011 = E001,
G1100 = E110, G1101 = E111, G1110 = E100, G1111 = E101.

Next, let k = 4, and S1 = 0x5 = 0101. In this case, j = 1, and for K ′ =
(K ′

0, K
′
1, K

′
2), K1 = (K ′

0, 0, K ′
1, K

′
2), and K2 = (K ′

0, 1, K ′
1, K

′
2 ⊕ 1). Then we

obtain 


G0000 = E000, G0001 = E001, G0010 = E010, G0011 = E011,
G0100 = E001, G0101 = E000, G0110 = E011, G0111 = E010,
G1000 = E100, G1001 = E101, G1010 = E110, G1011 = E111,
G1100 = E101, G1101 = E100, G1110 = E111, G1111 = E110.

We note that G can be computed efficiently if E can be computed efficiently.
Suppose that we are given a k-bit key K and a plaintext X , and we want to
compute GK(X). Now, let j ← nzi(S1), and check if the j-th bit of K is zero. If
it is, let K ′ ← first0..j−1(K)‖lastj+1..k−1(K) and return EK′(X). Otherwise
let K ′ ← first0..j−1(K ⊕ S1)‖lastj+1..k−1(K ⊕ S1) and return EK′(X).

We now show that if E is a PRP, then G is a PRP. More precisely, we have
the following theorem.

Theorem 4.1. If Advprp
E (A) ≤ ε for any adversary A that makes at most q

queries, then Advprp
G (B) ≤ ε for any adversary B that makes at most q queries.

Proof. We prove through a contradiction argument. Suppose that there exists
an adversary B such that Advprp

G (B) > ε where B asks at most q queries. By using
B, we construct an adversary A such that Advprp

E (A) > ε where A asks at most
q queries.

The construction is given in Fig. 13. A has an oracle O (either P or EK′),
and A simply uses O to answer B’s queries. Finally A outputs b which is the
output of B.

First, suppose that O = P . Then A gives B a perfect simulation of a random
permutation. Therefore, we have

Pr(P R← Perm(n) : BP (·) = 1) = Pr(P R← Perm(n) : AP (·) = 1) .



Next, suppose that O = EK′ . Then A gives B a perfect simulation of G, since
from the B’s point of view, each

E0,...,0, . . . , E1,...,1

is chosen with probability 1/2k−1 = 2/2k, which is a precise simulation of G.
Note that G is

E0,...,0, E0,...,0, . . . , E1,...,1, E1,...,1

and each EK′ is chosen with probability 2/2k. Therefore, we have

Pr(K R← {0, 1}k : BGK(·) = 1) = Pr(K ′ R← {0, 1}k−1 : AEK′(·) = 1) .

��

4.2 OMAC1′′[G] Is Completely Insecure

Let OMAC1′′[G] denote OMAC1′′, where G is used as the underlying block
cipher.

We have the following theorem.

Theorem 4.2. OMAC1′′[G] is not a secure MAC. There exists an adversary A
that makes 1 query and Advmac

OMAC1′′[G]
(A) = 1.

Proof. Since we have
GK(·) = GK⊕S1(·)

for any k-bit key K ∈ {0, 1}k, attacks in Sect. 3.1 and 3.3 can be applied to
OMAC1′′[G]. ��

5 Conclusion

In this paper, we showed that OMAC1′ and OMAC1′′ proposed in [12] are less
secure than OMAC1. More precisely,

– OMAC1′ is completely insecure. There are forgery attacks by using only one
oracle query, and

– OMAC1′′ is less secure than original OMAC1. It is impossible for OMAC1′′

to prove its security under the assumption of the underlying block cipher
being a PRP.

References

1. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of
symmetric encryption. Proceedings of the 38th Annual Symposium on Foundations
of Computer Science, FOCS ’97, pp. 394–405, IEEE, 1997.



2. M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block chaining
message authentication code. JCSS, vol. 61, no. 3, 2000. Earlier version in Ad-
vances in Cryptology — CRYPTO ’94, LNCS 839, pp. 341–358, Springer-Verlag,
1994.

3. A. Berendschot, B. den Boer, J. P. Boly, A. Bosselaers, J. Brandt, D. Chaum,
I. Damg̊ard, M. Dichtl, W. Fumy, M. van der Ham, C. J. A. Jansen, P. Landrock,
B. Preneel, G. Roelofsen, P. de Rooij, and J. Vandewalle. Final Report of RACE
Integrity Primitives. LNCS 1007, Springer-Verlag, 1995.

4. J. Black and P. Rogaway. CBC MACs for arbitrary-length messages: The three
key constructions. Advances in Cryptology — CRYPTO 2000, LNCS 1880, pp.
197–215, Springer-Verlag, 2000.

5. J. Black and P. Rogaway. A block-cipher mode of operation for parallelizable
message authentication. Advances in Cryptology — EUROCRYPT 2002, LNCS
2332, pp. 384–397, Springer-Verlag, 2002.

6. FIPS 113. Computer data authentication. Federal Information Processing Stan-
dards Publication 113, U. S. Department of Commerce / National Bureau of
Standards, National Technical Information Service, Springfield, Virginia, 1994.

7. ISO/IEC 9797-1. Information technology — security techniques — data integrity
mechanism using a cryptographic check function employing a block cipher algo-
rithm. International Organization for Standards, Geneva, Switzerland, 1999. Sec-
ond edition.

8. T. Iwata and K. Kurosawa. OMAC: One-Key CBC MAC. Pre-proceedings of Fast
Software Encryption, FSE 2003, pp. 137–162, 2003. To appear in LNCS, Springer-
Verlag. See http://crypt.cis.ibaraki.ac.jp/.

9. T. Iwata and K. Kurosawa. On the correctness of security proofs for the 3GPP
confidentiality and integrity algorithms. To appear in Ninth IMA International
Conference on Cryptography and Coding, LNCS, Springer-Verlag.

10. K. Kurosawa and T. Iwata. TMAC: Two-Key CBC MAC. Topics in Cryptology —
CT-RSA 2003, The Cryptographers’ Track at RSA Conference 2003, LNCS 2612,
pp. 33–49, Springer-Verlag, 2003.

11. M. Luby and C. Rackoff. How to construct pseudorandom permutations from
pseudorandom functions. SIAM J. Comput., vol. 17, no. 2, pp. 373–386, April
1988.

12. C.J. Mitchell. On the security of XCBC, TMAC and OMAC. Technical Report
RHUL-MA-2003-4, 19 August, 2003. Available at
http://www.rhul.ac.uk/mathematics/techreports. Also available from NIST’s
web page at http://csrc.nist.gov/CryptoToolkit/modes/comments/.

13. E. Petrank and C. Rackoff. CBC MAC for real-time data sources. J.Cryptology,
vol. 13, no. 3, pp. 315–338, Springer-Verlag, 2000.

14. P. Rogaway. Comments on NIST’s RMAC proposal. Comments to NIST. Avail-
able at http://www.cs.ucdavis.edu/~rogaway/xcbc/index.html. Also available
at http://csrc.nist.gov/CryptoToolkit/modes/comments/.

15. J. Sung, D. Hong, and S. Lee. Key recovery attacks on the RMAC, TMAC, and
IACBC. The Eighth Australasian Conference on Information Security and Privacy,
ACISP 2003, LNCS 2727, pp. 265–273, Springer-Verlag, 2003.


